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Abstract

The scientific challenge of understanding global climate change requires the appli-
cation of knowledge discovery and datamining techjiques on alarge scale. Advances
in parallel supercomputing technology enable high- resolution modeling, while sensor
technology allows data capture on an unprecedented scale.  We discuss here experi-
ences with a data analysis environment developed at UCLA, CONQUEST, which pro-
vides content-based access to such scientific datasets. CON QUEST (CONtent-based
Querying in Space and Time) employs a combination Of workstations and massively
parallel processors (MPP’s) to mine geophysical datasets possessing a prominent tem-
poral component. It iS designed to enable complex multi-] odal interactive querying
and knowledge discovery, while simultaneously coping with the extraordinary compu-
tational demands posed by the scope of the datasets involved. We review its use to
perform automatic cyclone extraction and detection oOf spatio-temporal blocking con-
ditions on MPYP platforms.
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1 Introduction

Understanding the long-term behavior of the earth’s atmospheres and oceans is one of a
number of ambitious scientific and technological challenges which have been classified as
“ Grand Challenge” problems. These problems sharc in common the need for the application
of enormous computational resources if they aleto be solved. Substantial progress has of
course already beenmadeon globa climate analysis over the years, due on the one hand to
the development of ever more sophisticated sensors and data-col jection devices, and on the
other to the implementation and analysis of large-scale inodels on supercomputers. Gigabytes
of data can now be generated with relative case for a variety of important geophysical
variables over long time scales. However, this very success has created a new problem: how
do wc store, manage, access and interpret the vast quantities of information now at our
disposal ?

The issue of data management and analysis is in itself a Grand Challenge which must
be addressed if the production of real and synthetic data on a large scale is to prove truly
useful. The challenge has been addressed by the development at UCLA of of CONQUEST
(CONtent-based QUerying in Space and Time) [1], a distributed parallel querying and anal-
ysis environment developed to address this challenge in a geoscientific setting. The basic idea
of CONQUEST is to supply a knowledge discovery environment which alows geophysical
scientists to 1) casily formulate queries of interest, especially the generation of contmt-based
indices dependant on both ”specified” and ”emergent” spatio-temporal patterns, 2) execute
these queries rapidly on massive datasets, 3) visualize the results, and4) rapidly and in-
teractively infer and explore new hypotheses by supporting complex compound querices (in
general, these queries depend not only on the different datasets themselves, but also on
content-based indices supplied by the answers to previous queries).

Contmt-based access to image databases is a rapidly developing field with applications to
anumber of different scientific, engincering and financial problems. A sampling may be found
in volumes such as [2, 3]. One example is the QUBIC project [4] illustrating the state-of-the-
artin image retricval by content, while examples of workin the area of geoscience databases
include JARTool [5], VIMSYS [G] and Sequoia 2000 ['/]. Many of these efforts are directed
at datascts which contain relatively static l]igh-resolution spatial patterns,such as high-
resolution Landsatl imagery, and Synthetic Aperture Radar imagery of the earth’s surface
and of other planets. CONQUEST shares a great deal in cominon with these systems. Its
distinguishing features arc, 1 ) the fact that it is designed to address datascts with prominent
temporal components in addition to significant high-1esolution spatial information, and 2)
that it is designed from the beginning to take maximum advantage of parallel and distributed
processing power.

2 System Architecture

The systemn architecture is outlined inFigure 1. Details canbe found in []]. It consists of
the the following 5 basic components:
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The scientific workbench consists of a graphical uscr interface enabling the formulation of
queries in terms of imagery presented on the screen by the Visualization Manager. Queries
formulated on the workbench arc parsed aud optimized for target architectures by the Query
Manager, and then passed onto the execution engines. These can be either parallel or serial
super computers, such a IBM SPP1and Intel PParagon supercomp uters, single workstations,
or workstation farms. The simplest queries consist of the extraction of well-dcflncd features
from “raw” data, without reference to any otherinformation. These features arc registered
with the information Depository to act as indices for further queries. Salient information
extracted by queries can aso be displayed via the Visualization Manager. The latter is
implemented on top of 11, and supports static plotting (21) and 31> graphs) of data, anaysis
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Figure 1: Sytem Archit ccture

of data (e. g., Statistical, contours), and animation of datasets.




3 Datasets

C ONQUEST has been applied to datasets obtained from two different sources. The first
dataset isoutput from an Atmospheric Global Circulation Model developed at UCLA, cho-
sen for two principal reasons: (1) it includes a challenging set of spatial-tempo yal patterns
(e.g., cyclones, hurricanes, fronts, and blocking events); and (2) it is generally free of in-
complete, noisy, or contradictary information. The UCLA atmmospheric general circulation
model (AGCM) [8] is a finite-diffcrencc model that includes sophisticated parameterizations
of cumulus convection [9, 1 O], as well as planetary boundary layer processes and parame-
terizations of shortwave andlongwave radiative transfer. The horizontal structure of the
model is typically represented by grid cells of various resolution; wc arc using a grid size of
5° longitude and 4° of latitude. The vertical component of the model is represented by a
series of pressure layers; the version in this study has 9 layers in the vertical with the top at
50 milli bars.

The prognostic variables of the AGCM are horizontal velocitics, potential temperature,
water vapor and ozone mixing ratio, surface pressure, ground temperature, and the depth of
the planctary boundary layer. ‘Jhere arc also diagnostic variables such as vertical velocities,
precipitation, cloudiness, surface fluxes of sensible and latent heat, surface wind stress and
radiative heating. Typically, the model’s output is written out to the databasc at 12-hour
(simulation time) intervals, however, this frequency canbe modified depending on storage
capacity of the database. the model can be run with different spatial resolutions (grid sizes)
and temporal resolution (output frequency). At the lowest spat ial resolution (4° x 5°, 9
levels) with 12 hour output interval, the AGCM produces approximately 5 Gbytes of data
per simulated year, while a 100-year simulation of a AGCM with a 1° x 1.25°, 57 levels)
generates approximately 30 terabytes of output.

The second datasct is obtained from ECMWEF ( Kuropean Center for Medium-ran,gc
Weather Forecasting), and is split into two subgroups based upon simulated data and satel-
lite data respectively. The ECMWF T421,19 and T421.19 VIip AMIP 10 Year Simulation
(1979-1988) datasct contains fields with a gridsize 128 longitudinal points (2.81 25°) by 64,
Gaussian latitudinal points, by 15 pressure levels. Model variables were output to files every
6-hour (simulation time) intervals. Each 4D variable (e.g., geopotential height) requires 7Gb
of disk storage. The KCMWF TOGA Globa Basic Surface and Upper Air Analyses datasct
consists of fields which arc uninitialized analyses sampled twice a day (O GMT and 1200
GMT), a 14 or 15 pressure levels, over a (2.5° longitude by 2.5¢ latitude grid. Upper air
variables include geopotential, temperature, vertical velocity, u- and v- components of hori-
zontal wind, and relative humidity, while surface variables include surface pressure, surface
temperature, mean sca-level pressure, etc.. The datasct requires about 130 Mb/month.

4 Spatio-temporal. Feature Extraction

We review here the usc of CONQUEST to capture heuristic rules for prominent features, as
discussed in [1]. T'wo canonical features are cyclones andblocking features. These phenomn-
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enainteract in amanner that is still imperfectly understood, and therefore represent ideal
candidates for the implementation of complex queries.

4.1. Cyclone detection

Cyclones arc¢ some of the most prominent climatic features displayed by Global Circulation
Models. There is, however, no single objective definition in the literature of the notion of
acyclone. Several working definitions are based upon the detection of a threshold level
of vorticity in quantities such as the atmospheric pressure at sea level. others are based
upon the determination of local minima of the sea level pressure [11]. Thelatters’ careful
treatment includes the introduction of extra relevant information such as prevaling wind
velocities in amecaningful way.

Cyclones are defined below as one-dimensional tracks in a 3-dimensional space consisting
of atime axis and the 2 spatial axes of latitude and longitude. Cyclones represent paths
of abnormally low sca level pressure in time. A typical cyclone track, in this case over
the continental United States, is shown schematically in Figure 2, together with a dataflow
description of the associated cyclone query. The track is found by first detecting onc or more
local minima in the 2-dimensional grid of sea level pressure values representing a single time,
frame of the GCM. A local minimum is found by locating a grid location whose pressure
value is lower than that at all the grid points in a neighborhood around the location by some
(adjustable) prescribed threshold. This minumum is then refined by interpolation using
low-order polynomials such as hi-cubic splints or quadratic bowls. Given a loca minimum
occurring in a certain GCM frame, the central idea is to locate a cyclone track by detecting
in the subsequent GCM frame a new local minimum which is “sufficiently close” to the
current one. Two minima are deemed “sufficiently closc” to bepart of the same cyclone
track if they occur within 1/2 a grid spacing of each other. Failing this condition, they are
also "sufliciently closc” if their relative positions are consistent with the instantaneous wind
velocity in the region. A trail of several such points computed from a series of successive

frames constitutes a cyclone.
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Figure 2: 1 )ata flow representation of the cyclone tracking query.

Figures 3 and 4 present cyclopresense density maps of cyclones during the northern
winter extracted from-ECMWI model and analyses datascts, respectively. In the figures,

white represents the lowest. density value, while black indicate- the largest density value.




Inthe KCM WE analyses ( “observational”) dataset (I'igure 3), as inthereal atmosphere,
most of extratropical cyclones arc formed and migrate within afew zonally-clon gated regions
(i.e., "stormtracks”) in the northern Atlantic and Pacific aud off around the Antarctic. The
ECMWIFAGCM (4), however, tends to yield significantly more cyclones than obscrved.

90CYC[ OPRESENCE (ECMWF Analyses) (Tot: 10597, Max: 49, Min: O)

]

IYigure 3: Cyclopresense density map of cyclones during the nothern winter extracted from
the FCMWE Analyses dataset (1 985-1994).

,QOCYCLOPR,[SENC[, (FCM\NF AGCM) (Tot: 22149, Mox: 167, Min: 0)

Figure 4: Cyclopresense density map of cyclones during the nothern winter extracted from

the KCM WIE GCM model data (1 979-1988).




4.2 Blocking Feature cxtraction

Ontime scales of oneto two weeks the atmosphere occasionally manifests features which
have well-defined structures and exist for an extended period of time essentially unchanged in
form. Such structures arc referred to, in general, as “persistent anomalies’. Onc particular
class of persistent anomalies, in which the basic westerly jet stream in mid-latitudes is split
into two branches, has traditionally been referred to as “blocking” events. The typical
anomalies in surface weather (i.e., temperature and precipitation) associated with blocking
events and their observed frequency have made predicting their onset and decay a high
priority for medium-ran,gc (5-15 day) weather forecasters.

While there is no general agreement on how to objectively define blocking events, most
definitions require that the following conditions exist: 1) the basic westerly wind flow is split
into two branches, 2) a large positive geopotential height anomaly is present downstream of
the split, and 3) the pattern persists with recognizable continuity for at least 5 days. Blocking
features arc determined by measuring the difference hetween the geopotential height at a
given time of year and the climatological mean at that time of ycar am-aged over the entire
timne range of the dataset. Before taking this difference, the geopotential height is first passed
through a low-pass temporal filter (a 4th order Butter worth filter with a 6-day cut-off), to
ensure that blocking signatures are not contaminated by the signals of migratory cyclones and
anticyclones. The filtered ficld is averaged to obtain theinean year. A Fourier transform of
the mean year is then taken, followed by an inverse Fourier transformn on the first four Fourier
components. This procedure yields smooth time series for seasonal cycles even if the dataset
is small (<~ 100 years). The resulting filtered mean year is subsequently compared with
the Iluttcrworth-processed geopotential height fields to generate the fundamental anomaly
fields. Blocking “events’ canbe detected as time periods 6t during which filtered geopotential
anomaly values are persistently higher than 0. Figure 5 presents a density plot indicating
the global occurrances of Mocking events for UCLA AGCM data (1985-1989), extracted
using 6t = 5 days and 6 = 0.50. In the figm1 ¢, white represents -he lowest density value,
while black indicates the largest density value. Since 1)locking is by nature an extratropical
phenomenon, wc have eliminated values in the tropics from the plot.

4.3 Parallel Implementation of Feature Detection

The algorithins described above for extracting cyclone and blocking features on a 10-year
dataset of atmospheric data require several hours to execute on a typical scientific worksta-
tion. Pre-processing and storage of indices by workstations is of course a feasible alternative
for heavily used features, but will not suffice for a more general and wide-ranging querying
capability. 1 tis here that massively parallel processors (MPP’s) enter the picture. The fea-
tures described above can be computed quite efficiently on MP1’’s, bringing the turn-around
time for atypical query down to the range of minutes on mcdiul]l-scale parallel machines
that have been used to date (a 24-node IBM S1'1 and a 56--node Intel Paragon). It is ex-
pected that near real-tilllc performance will be achieved when the system is ported to larger
platforms comprising up to 512 nodes.
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Figure 5:Density map of blocking events extracted from the JCLLA AGCM model data-
(1985-1989).

The paralel implementation of these queries requires of course an explicit decomposition
of the problem across the various nodes of a parallel machine. Inthe case of cyclone detection,
the optimal decomposition is based upon a division of the probleminto separate temporal
glices, each of which is assigned to a separate node of the machine. A teinporal decomposition
such as this provesto be highly efficient on a coarse-graincd architecture, provided that
cyclone results obtained during a given time zone do not interfere too strongly with those
at a later time. Care must be exercised in such a decomposition, as the temporal dimension
does not typically parallelize in a natural way, especially when state information plays an
important role in the global result. State-informatioll plays a fundamental role in the very
definition of cyclones, so care must obviously be taken in the ensuing parallel decomposition.
The problem proves tractable in the case of cyclone detection because of the observation that
no cyclones last longer than 24 frames. This allows the use of a straightforward temporal
shadowing procedure, in which each node is assigned a small nuinber of extra temporal
frames that overlap with the first fcw frames assigned to its successor node. In the case of
blocking feature detection, a straightforward spatial decomposition which assigned different
Mocks of grid points to different machine nodes proves to be optimal.

5 Conclusions

Eixtensible query processing systems in which scientists can casily construct content-based
queries have beenreviewed that enable important features presentin geophysical datasets
to be extracted aud catalogued efficiently. Examples include cyclone tracks and Mocking
events from both observational and simulated datasets on the o1 der of gigabytesin size.

Several future issues must be addressed by reseal chers in the field. Onc is the popu-




lation of the query set with a wider range of phenomenaincluding oceanographic as well
as atmospheric queries. Another is the application of machine learning methods to extract
previously unsuspected patterns of interest. A third issue is the scaling of system Size onto
massively parallel platforms, a nccessary ingredient to cope with the terabyte size datasets
that are becoming available. in this area, scaleable1/O considerations are at least as im-
portant as those associated with computation per se, and are an active area of research. A
final issue is the development of an appropriate field- nodel language capable of expressing
gueries based upon large imagery datascts rapidly and efliciently.
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